
1

AwCOM 3
The Awave Streaming Audio Converter

COM library

Reference manual

Table of Contents:

INTRODUCTION: ... 2

USAGE SECTION:... 3

FILE ORGANIZATION ... 3
INSTALLING THE SDK ... 3
REDISTRIBUTING AWCOM 3 ... 4
GUIDS AND INTERFACES .. 5
A NOTE ON STRINGS ... 5
FILTER GRAPHS ... 5
THE CONVERSION PROCESS ... 6
USING AWCOM 3 WITH C++ .. 9
USING AWCOM 3 WITH DELPHI .. 10
USING AWCOM 3 WITH VISUAL BASIC .. 11

REFERENCE SECTION .. 12

ERROR CODES ... 12
THE IAWMANAGER INTERFACE ... 13
THE IAWGRAPH INTERFACE .. 25

AwCOM v3.8 is based on AwC++ v4.3

Copyright © 2003, 2021, FMJ-Software. All Rights Reserved

2

Introduction:

The Awave Streaming Audio Converter COM library v3.x from FMJ-Software, or AwCOM 3 for short, is a COM
dual interface, in-process DLL server component. It provides functions for converting between several different
audio waveform file formats. It can also optionally perform several forms of processing on the audio data. The
library is broken up into a modular set of “filters” that are connected in a “graph” through which the audio data is
streamed. Most modules are licensed separately – so you only have to pay for the parts that you use.

AwCOM 3 is built as a wrapper on top of AwC++ – a C++ class library from FMJ-Software intended for doing
various audio streaming & conversion tasks. The Awave Audio, ACDR and Chromatia Tuner software from FMJ-
Software are examples of commercial products built using AwC++.

The file License.rtf contains the details of your licensing agreement for AwCOM 3.

/ Markus of FMJ-Software, http://www.fmjsoft.com/

Symbol index

Error codes, 12
IAwGraph, 25

AddFilter, 26
EnumFilters, 32
Execute, 33
GetProperty, 34
SetProperty, 35

IAwGraph.AddFilter
FileReader, 27
WaveSynth, 27
AudioInput, 27
FileWriter, 28
NullSink, 28
AudioOutput, 28
ChannelBroker, 29
Trimmer, 29
PlugIn, 29
Normalizer, 30
Resampler, 31
SilenceRemoval, 31

IAwManager, 13
GetProperty, 14
SetProperty, 15
EnumFileReaders, 16
EnumFileWriters, 17
EnumFileWriterFormats, 18
EnumAudioInputs, 19
EnumAudioOutputs, 20
EnumPlugIns, 21
CreateGraph, 22
CreateEasyGraph, 23
DescribeError, 24

http://www.fmjsoft.com/

3

Usage section:

The AwCOM 3 component, implemented by AwCOM3.dll, consists of two object classes: AwManager, which
expose the IAwManager interface, and AwGraph that exports the IAwGraph interface. The AwManager class
contains functions for managing your ‘license keys’, for enumerating available file readers and file writers, for
creating AwGraph objects, and a few miscellaneous functions. The AwGraph class represents a ‘graph’ of filters
that controls the ‘flow’ of the audio data during a conversion – and through which the audio data is ‘streamed’.

File organization

The files compromising the library are organized as follows:

directory: what:
Doc Documentation

Bin.x86 32-bit versions of the AwCOM run-time

Bin.x64 64-bit versions of the AwCOM run-time

C++ Resources for using AwCOM with C++

Delphi Resources for using AwCOM with Borland Delphi 3 or later

VB Resources for using AwCOM with Visual Basic 5 or later

The README.TXT file in the main directory contains a more complete file listing.

Installing the SDK

To install the AwCOM 3 SDK environment, simply unpack all of the files from the distribution archive.

To install the AwCOM3 run-time on your machine, run the AwInst3.exe program (found in Bin.*).

Note: When running under Windows Vista or later, you must allow AwInst3.exe to run with administrator
privileges (the UAC should pop up and ask for it if necessary – the files are installed to …\<program

files>\Common Files\System\AwCOM – a location with restricted write access).

4

Redistributing AwCOM 3

The easiest way by far to install or uninstall AwCOM 3 on a machine is to run the AwInst3.exe program

(uninstall by passing it an “-u” command line switch). This installs (or uninstalls) the AwCOM3.dll, plus any

external codec dll’s required. It is recommended that you use AwInst3.exe when redistributing AwCOM 3

with your application - but if you wish, you may use a modified version of AwInst3 (the C++ source code is

supplied in the C++/AwInst3 directory), or you may opt to use an installation program of your own.

Files to include

 AwInst3.exe Optional installation program

 AwCOM3.dll The AwCOM in-process server.

 <*.dll> Any additional codec DLL’s that may be required.

Custom run-time installation procedure

If you choose to provide your own installation/unistallation program, other than AwInst3, then you must be careful
to observe the following ‘rules’. (Note: many specialized installation creation tools (e.g. Install Shield) will handle
many of these things for you automatically, but you still should be aware of them).

- When installing a DLL file you must always first check if it is already present at the intended location. If it
is then you must compare the file version numbers stored in the ‘fixed file info’ section of it’s file resource
part. You must never overwrite a file with a newer version number with a file with an older version
number. Newer files are guaranteed to be backward compatible. The file version numbers can be
retrieved using the standard Windows ‘File Installation Library’ API.

- When installing a DLL, increment its ‘usage count’ in the Windows registry. When uninstalling,

decrement its usage count. Never delete any file before it’s usage count has reached zero (or less). The
‘usage count’ is stored in the Windows registry under ”HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows\CurrentVersion\SharedDLLs” as an entry with the full DLL file

name and path as the entry name, and the usage count as the entry data (stored as DWORD type).

- Get the AwCOM ‘base path’ - usually ”C:\Program Files\CommonFiles\System\

AwCOM” - but this could vary on international language versions of Windows. To construct the base

path, fetch the value of the Windows registry entry ”CommonFilesDir” under

”HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion”.

Then append ”\System\AwCOM” to complete the path.

- Install/uninstall AwCOM3.DLL in the ‘base path’ (see above). The location is very important because

the AwCOM 3 class may be shared between applications from multiple vendors and there must be only
one instance of it installed on a system.

- Register the AwCOM 3 classes. This should be done by letting it ‘self register’ by running

‘RegSvr32.exe “<base path>\AwCOM3.DLL”’ (add the -u switch before the path if you

want to unregister it). Note that RegSvr32 is a standard Windows component (always be present in the
Windows system directory).

- Install/uninstall any additional codec DLL’s that may be required for the file formats that you are going to

use (e.g. Lame_Enc.dll for writing MP3 files).

5

GUIDs and interfaces

GUID’s (a unique 128-bit number) are used to identify interfaces and other objects by COM. On top of COM there
exists a ‘dynamically typed component environment’ often referred to as the ‘dispatch interface’ and required by
some languages such as VisualBasic. Dispatch enabled components can be referred to by name instead of by
GUID. AwCOM 3 can be called both using the ‘native’ COM interfaces and the less effective (but much more user
friendly) dispatch interface.

The GUID’s identifying the various exposed parts AwCOM 3 are as follows:

 Object GUID Dispatch name
 AwCOM3 v1.0 type library 64EF5CB3-DAC4-4EBD-855C-2F41A69D4290 AwCOM3

 AwManager class id AF0C2EC1-9715-4A2E-A42F-0A148910FA4C AwCOM3.AwManager

 AwGraph class id 0B2E60B4-0DBD-41B2-97B9-779757BA20BC AwCOM3.AwGraph

 IAwManager interface id 15D81CE2-68C1-4F5D-82B8-F645B81EB18B n/a
 IAwGraph interface id F2B0A306-2A93-432D-9D25-02A0ADC5CD00 n/a
 Error codes n/a AwCOM3.AwErrors

A note on strings

If you are using Visual Basic, Delphi or some similar environment that can use ‘OLE strings’ natively and/or
transparently, then you can skip this section!

In order to be compatible with ‘dispatch’ based clients, AwCOM 3 uses ‘standard OLE Automation strings’. Some
environments (e.g. Visual Basic) handles these strings transparently – so you don’t have to worry about this at all,
while in others (e.g. Visual C++) you must use SysAllocString, SysFreeString and related

Windows API functions to manage the strings (Visual C++ provides a _bstr_t class to help with this). An important
thing to know if you are managing the strings yourself, is the convention that input string parameters (BSTR) are
both allocated and later freed by the client (your program), while “by reference” return strings (BSTR *) are
allocated by the server (AwCOM3) and freed by the client (your program).

Filter graphs

The AwCOM 3 library implements audio data processing as a filter graph. The graph contains a simple chain of
filters connected in series. The audio is streamed in small packets of data from one end of the graph-chain to the
other, as illustrated in the following figure:

A source filter is any filter that has an output, while a sink filter has only an input, and a morph filter has both.
Morph filters are used to process, monitor or just rearrange data. You can have any number of morph filters but
there must only be one source and one sink.

 Source Morph Sink

 filter filter filter

E.g: File reader Resampling File writer

 Flow of data packets

6

The conversion process

The details of using AwCOM 3 when you get down to earth is dependent on the language that you use –
therefore it is detailed for a few different languages in subsequent sections. Here however, is given a general
outline to familiarize you with the concepts involved.

Initialization

You start by creating an AwManager object and get it’s IAwManager interface.

Next you have to call AwManager.SetProperty(“License”, params…) one or more times in

order to enable the parts of AwCOM 3 for which you have bought licenses. For your particular set-up this must be
done as follows:

 AwManager.SetProperty(“License”, “name=ANameYouGotFromUs”)

 AwManager.SetProperty(“License”, “wav=AKeyYouGotFromUs”)

 AwManager.SetProperty(“License”, “mpeg=AnotherKeyYouGotFromUs”)

Next call AwManager.CreateEasyGraph or AwManager.CreateGraph to create an AwGraph

object and obtain its IAwGraph interface.

Easy graph setup – CreateEasyGraph

If you don’t want any in-depth control of the filter graph setup – maybe you just want to convert from one file
format to another with as little fuss as possible – then use the AwManager.CreateEasyGraph function

to create a pre-built graph. Here’s an example that converts a WAV file to an 8000 Hz, 1-channel AU file with mu-
Law data:

 AwGraph = AwManager.CreateEasyGraph(

 “input.wav”,

 “output.au”,

 -1,

 “mu-Law”,

 8000,

 1,

 &pGraph)

The first parameter is the input file name. The second is the output file name. The third is an enumeration
identifier for the output file format (see AwManager.EnumFileWriters) – use the value -1 to auto-

detect from the file extension. The fourth is the desired output data format (see
AwManager.EnumFileWriterFormats). The fifth is the desired sample-rate – use -1 to keep the

input sample rate. The sixth and last is the number of output channels – use -1 to use the same number of

channels as the input data (if possible, if not, the best nearest channel count it used).

7

Manual graph setup – CreateGraph

If you want more control over what’s happening – then use the AwManager.CreateGraph function to

create an empty graph:

 AwGraph = AwManager.CreateGraph(&pGraph)

Then manually add whatever filters you want – in the exact sequential order that you want them and with the
parameters of your choice. Here’s an example that sets up the same graph as in the EasyGraph example:

AwGraph.AddFilter(“FileReader”, “file=\”input.wav\””)

AwGraph.AddFilter(“Resampler”, “samplerate=8000”)

AwGraph.AddFilter(“ChannelBroker”, “outchannels=1”)

AwGraph.AddFilter(“FileWriter”,

 “file=\”output.au\” dataformat=\”mu-Law\””)

After adding the FileReader filter, you can start querying the graph about input file properties (see

AwGraph.GetPropery) such as sample rate, length and number of channels. You can also retrieve and/or

set various informational properties such as author, copyright, comment, track number, loop point, et c.
After adding a FileWriter filter, you can query output file info (sample rate, channel count, and length).

Note that when adding a reader or a writer, it will immediately require access to the files – they mustn’t be locked
by another app or the call will fail.

Execution

Finally – to perform the actual conversion process – i.e. to start streaming the data through the graph - simply call
AwGraph.Execute. The call will not return until the conversion is either finished, or an error occurred (in

which case it is aborted). Note that you can only call it only once, calling it a second time has undefined results.

NB: The AwCOM 3 library’s threading model is “both”, which means that it can work both with the “apartment
threading” and the “free threading” (a.k.a. “multithreading”) models. It is recommended that you keep only one
single instance of AwManager and use it to create AwGraph’s. If you want to run concurrent threads, then

the graphs can be handed over to dedicated worker threads.

8

Error handling

Although omitted in the examples above – don’t forget to check the error codes returned by all the function calls!
They all return a HRESULT value, however some languages, e.g. Delphi and VisualBasic, hides this and instead

raise an exception when an error occurs, in which case you need to add an exception handler to catch any errors.
To get a text description from an error code, use:

 AwManager.DescribeError(lErrorCode, &strDescription).

Progress reporting

There is no COM-based notification interface for reporting the progress of the executing graph (the progress of
the file conversion). However, there is a hack to obtain the progress status:

– Before executing the graph, you may call:

 AwGraph.SetProperty(“ProgressCallback”, strProcHexAddress).

… where strHexAddress is a string containing the memory address of a callback-function written –

encoded as an 8/16-digit Hexadecimal number. The callback function will be called periodically during the graph
execution. The function must use the Windows standard calling convention (__stdcall in C++), taking a

single integer as parameter (the progress state in percent), and having no return value.

Here’s an example for 32-bit VB.NET using a delegate as a callback (a little bit tricky…)

Public Sub CallBackFunc(ByVal PercentValue As Int32)

 … handle progress callback here …

End Sub

Delegate Sub DelegateProgress(ByVal PercentValue As Int32)

Private Sub SetAwProgress(ByRef tsMsgError As String)

Dim myDelegate As New DelegateProgress(AddressOf CallbackFunc)

Dim myPtr As IntPtr = Marshal.GetFunctionPointerForDelegate(myDelegate)

Dim hexAddress As String = Hex(myPtr.ToInt32)

Call moAwGraph.SetProperty("ProgressCallback", hexAddress)

End Sub

Freeing file handles

The graph may hold file handles open for the input and/or output file until the time that the graph object is
released. The object is normally released when you call AwGraph.Release(). However, some languages

(e.g. VB) which use garbage collection for memory management will hide this function from the programmer –
making it difficult to determinate exactly when a file handle will be released – preventing a newly written file from
being opened in another app. In this case you can explicitly release the file handles by calling:

 AwGraph.SetProperty(“ClearGraph”, “true”).

9

Using AwCOM 3 with C++

For C++ users, a header file, AwCOM3.h, with AwCOM 3 definitions has been provided in the C++ subdirectory.

The GUID variables that you need - CLSID_AwManager, IID_IAwManager and IID_IAwGraph -

are per default declared as 'extern'. If you place #define INITGUID statement before including the header

file, they will instead be compiled as normal variables. I.e. in order to compile and link them once and once only,
you must use the INITGUID declaration (before including the header file) once and once only in each project.

MFC users note: MFC users should use #include ”initguid.h” instead of #define INITGUID.

The IDL interface definition has been complemented with more default parameter values for C++ use. E.g. many
pointers to return values are NULL by default (in this case no value is returned for that parameter).

If you use Visual C++ v6 or later, you can use the _bstr_t helper class to manage string operations

(#include <comdef.h> to get the _bstr_t class definitions). Use _bstr_t(<BSTR>,

false) to ‘take over’ a string returned by an AwCOM 3 function. Use _bstr_t(<char *>) to create a

BSTR to send as input to an AwCOM 3 function. The _bstr_t class also contains functions for easily

converting to and from normal 8-bit ASCII (simply type cast it to (const char *)) or 16-bit UNICODE

string (type cast it to (const WCHAR *)) and BSTR’s. For more information see the Visual C++ help files.

C++ Examples

In the C++/AwConv directory is a C++ program called AwConv.cpp. The supplied project files are for

Visual C++ 2010 and later. It is a simple command line audio file format converter. It should be set up and
compiled as a console mode application. When compiled, simply run AwConv.exe to get a list of command

line options. The source code contains some useful hints about how to use the AwCOM 3 object.

Here’s also a short example of how to open a .WAV file, resample it to 8000 Hz, and then save it as a mono, mu-
law data-type of the AU file format. Note that error handling is omitted for increased readability.

// Instantiate AwManager

IAwManager *pawMan = NULL;

CoCreateInstance(CLSID_AwManager, NULL, CLSCTX_INPROC_SERVER,

 IID_IAwManager, (LPVOID *)&pawMan);

// Set license

pawMan->SetProperty(_bstr_t(”License”),_bstr_t(”name=\”Your license name here\””));

pawMan->SetProperty(_bstr_t(”License”),_bstr_t(”wav=Wav license key here”));

… et c …

// Create a graph

IAwGraph *pawGraph = NULL;

pawMan->CreateGraph(&pawGraph);

// Add filters…

pawGraph->AddFilter(_bstr_t(”FileReader”), _bstr_t(“file=\”input.wav\””));

pawGraph->AddFilter(_bstr_t(”Resampler”), _bstr_t(“samplerate=8000”));

pawGraph->AddFilter(_bstr_t(”ChannelBroker”), _bstr_t(“outchannels=1”));

pawGraph->AddFilter(_bstr_t(”FileWriter”),

 _bstr_t(“file=\”out.au\” dataformat=\”mu-Law\””));

// Execute graph!

pawGraph->Execute()

// Clean up

pawGraph->Release();

pawMan->Release();

10

Using AwCOM 3 with Delphi

Borland Delphi can use both dispatch and v-table based COM objects. As it is the more effective method, only the
v-table approach will be described here. As a convenience, the source code for a ‘Delphi unit’ file, AwCOM3.pas,
with the necessary definitions for using AwCOM 3 have been provided in the Delphi subdirectory.

Delphi’s WideString type corresponds to the OLE string type (BSTR) so if you use that, you should not have

to worry about string memory management. Delphi will also in most cases automatically translate between its
different ‘native’ string types!

Because all the methods and properties are defined as safecall, Delphi will hide the HRESULT return from

them. Instead all methods with the [retval] flag set for one parameter in the IDL definition will be seen as functions
(with the return value specified by the retval parameter), and the rest as methods. Whenever a method returns an
error code, an EOleException exception will be issued. The AwCOM 3 error code (from the hidden

HRESULT return) is found in EOleException.ErrorCode.

Add uses AwCOM3 to your program to get the interface declarations as well as a few helper functions.

To instantiate AwCOM 3 and retrieve the IAwManager interface, you can use the helper function:

CoAwCOM3.Create

Delphi Example

Here’s a short example of how to open a .WAV file, resample it to 8000 Hz mono mu-law AU file:

uses AwCOM3, SysUtils, ComObj;

var

awMan: IAwManager;

awG: IAwGraph

begin

// Instantiate an AwManager object

awMan := CoAwCOM3.Create;

try

 // Set license keys

 awMan.SetProperty(‘License’, ‘name=”MyCompany” wav=… au=… et c”);

 // Create a new graph

 awG = awMan. CreateGraph;

 // Add filters

awG.AddFilter(‘FileReader’, ‘file=”input.wav”’);

awG.AddFilter(‘Resampler’, ‘samplerate=8000’);

awG.AddFilter(‘ChannelBroker, ‘outchannels=1’);

awG.AddFilter(‘FileWriter’, ‘file=”output.au” dataformat=”mu-Law”’);

 // Run it!

awG.Execute

except // Catch any AwCOM 3 errors

on E: EOleException do

DispError('Error: ' + awMan.DescribeError(E.ErrorCode));

 end;

end.

11

Using AwCOM 3 with Visual Basic

The AwCOM3.DLL server provides a full type library, which makes it very easy to use it from Visual Basic. The
first thing you have to do is to tell Visual Basic where to find this type library.

To add the AwCOM component to your VB environment:

Select Project -> References… -> Browse…
 Go to \Program Files\Common Files\System\AwCOM, select AwCOM3.DLL and click Open.

 Check the box beside ‘AwCOM3 1.0 Type Library’ that should now be in the ‘references’ list.

The Object Browser

Visual Basic will format the methods and properties a little different than how the IAwManager and

IAwGraph reference sections in this document defines them (in IDL syntax). E.g. all methods with a retval

attribute will be seen as functions instead of as methods. The HRESULT return codes will not be seen but will be

raised as errors in case a function does not return a success code. Because of these differences, it’s a good idea
to use the object browser as a reference to the AwCOM 3 class syntax in Visual Basic. All functions and
declarations will have a short help text defined in the Object Browser (look under AwManager, AwGraph,

and AwErrors). When you need more explicit documentation for the parameters, look it up in this document.

VB Examples

There are two Visual Basic 6 sample applications included:
- VBSimple demonstrates the easiest way to do conversions (using a single CreateEasyGraph call).

- VBConv is a bit more complex and demonstrates how to manually construct conversion graphs.

The following sample demonstrates how to open a .WAV file and save it as 8000 Hz mono, mu-law format .AU:

' Instantiate objects

On Error GoTo AwErrHandler

Dim awG As AwGraph

Dim awMan As AwManager

Set aw = New AwCOM

Set awG = awMan.CreateGraph

' Create filter graph

awG.AddFilter “FileReader”, ”file=input.wav”

awG.AddFilter “Resampler”, “samplerate=8000”

awG.AddFilter “ChannelBroker”, “outchannels=1”

awG.AddFilter “FileWriter”, “file=output.au dataformat=””mu-Law”””

‘ Do it!

awG.Execute

GoTo Done

AwErrHandler:

MsgBox ”Error: ” + aw.DescribeError(Err.Number)

Done:

' Free objects

Set awG = Nothing

Set awMan = Nothing

NB: To set a progress callback function in VB6 you must create a .bas module with a public function declared like
thus: Public Function ProgressCB (Byval mPercentValue as integer) as long

Then call: AwGraph.SetProperty(”ProgressCallback”, HEX(AddressOf ProgressCB)))

12

Reference section

The COM standard ‘IDL definitions’ are given in this section.
The actual syntax used by a particular language is somewhat language dependent.

Error codes

All functions return an HRESULT value used to indicate either success or failure if some kind.

Success:

Value Name Description

0 awOk Function call succeeded.

1 awFalse Function call succeeded but nothing to return.

Failure:

Value Name Description

80040200h awGeneral A general unspecified error occurred.

80040201h awInvalidParam An invalid parameter was supplied.

80040202h awOutOfMemory Out of memory while performing operation.

80040203h awFileOpen Could not open the specified file.

80040204h awFileCreate Could not create the specified file.

80040205h awFileRead Could not read from the input file.

80040206h awFileWrite Could not write to the output file.

80040207h awInvalidOpSequence An invalid sequence of calls were made.

80040208h awUnsupDataFormat Unsupported data format was encountered.

80040209h awUnsupChannelFormat Unsupported channel format encountered/specified.

8004020Ah awUnsupFileFormat Input file was not of any recognized file format.

8004020Bh awUnsupCompression Unsupported compression format in the input file.

8004020Ch awInvalidFileType An invalid file type was encountered.

8004020Dh awCorruptedFile The input file was corrupted and reading failed.

8004020Eh awEmptyFile The input file did not contain any waveform data.

8004020Fh awInvalidLicense No valid AwCOM license could be found.

80040210h awMissingComponent Could not locate an external codec DLL.

80040211h awCancelled Operation cancelled.

80040212h awNoRights No read-rights - copy protected file.

Note: All the above values are given in hexadecimal number base notation.

13

The IAwManager interface

The IAwGraph is the main interface to an AwManager object containing the top level object in an AwCOM 3

server. All functions return an HRESULT value.

The actual syntax used by a particular language is somewhat language dependent. E.g. parameters marked with
[retval] will be returned as function results in languages that hides the COM HRESULT values.

As all COM interfaces, it inherits from IUnknown and thus have QueryInterface, AddRef and

Release methods – it is assumed that you are familiar with these – they are not documented here (note that

some languages, e.g. VisualBasic, will hide these methods and handle all the reference counting for you).

14

HRESULT GetProperty([in] BSTR strName,

[out, retval] BSTR *pstrValue);

Get an informational property.

Input:
 strName Name of property to get.

Output:
 *pstrValue Property value (And empty string if property not available).

The following properties can be retrieved:

Property name: Property value description:

Version AwCOM 3 library version.

Name Liberay name.

Copyright Library copyright string.

Licensee Name of licensee (your company name).

QuantizationType Bit depth quantization method.

15

HRESULT SetProperty([in] BSTR strName,

[in] BSTR pstrValue);

Set an informational property.

Input:
 strName Name of property to set.

Output:
 pstrValue Property value.

The following properties can be set:

Property name: Property value description:

License Set license key – see further below.

QuantizationType Select the bit depth quantization method (default=”RoundNearest”):

 Available types: ”RoundNearest”, ”RectWhiteNoise”,
 ”TriWhiteNoise”, ”ShapedNoise”, ”Default”

MP2.ID3 Set to 1 to enable writing ID3v1 tags to .MP2 files (default: 0).

MP2.JointStereo Set to 0 to prevent or 1 to allow Joint Stereo-mode for .MP2 files (default: 1).

MP2.AuxEnergy Set to 1 to store energy level as frame aux-data for MPEG layer II (default: 0).

MP3.ID3 Set to 1 to enable writing ID3v1 tags to .MP3 files (default: 0).

MP3.ID3v2 Set to 1 to enable writing ID3v2 tags to .MP3 files (default: 0).

MP3.APE Set to 1 to enable writing APE tags to .MP3 files (default: 0).

MP3.JointStereo Set to 0 to prevent or 1 to allow Joint Stereo-mode .MP3 files (default: 1).

AAC.ID3 Set to 1 to enable writing ID3v1 tags to .AAC files (default: 0).

AAC.ID3v2 Set to 1 to enable writing ID3v2 tags to .AAC files (default: 0).

AAC.APE Set to 1 to enable writing APE tags to .AAC files (default: 0).

MPEG.FindLength Set to 0 to prevent parsing MPEG audio streams in order to determine the

total length. This makes MP2/.MP3/.AAC-files open faster but the length is
unknown before the conversion completes. (default: 1)

BWF.LevelChunk Set to 1 to enable writing EBU “levl” (peak level info) BWF files (default: 0).

BWF.LevelChunkBlockSize Set EBU ‘levl’ graph block size in samples (default: 256).

BWF.LevelChunkAbsPeak Set to 1 to store only abs. peak value for EBU ‘levl’ graph (default: 0).

VOX.SampleRate Set default sample rate for input .VOX-files.

G726.BigEndian Set 1 for big-endian, or 0 for little-endian packaging of G.726 code words.

The ”License” property is very important – it is used to tell the AwCOM library your license keys which in

turn ‘unlocks’ various modules of the library. As value you pass it one or more “key=value” strings (separated by
blank space if more than one, and values containing space delimited in “quotes like this”). It does not matter if you
pass all your license keys in on call or one at a time in multiple calls. But the first key you pass must be “name”
with the value set to your company name as given to us. Here’s a typical example:

awManager.SetProperty(”License”, ”name=My Company Name”);

awManager.SetProperty(”License”, ”wav=LKS34DF723DF4JASDFADF...”);

awManager.SetProperty(”License”, ”aiff=097FA5DSG23LKDD2S3AS...”);

et c!

16

HRESULT EnumFileReaders([in, out] long *plId,

 [out] BSTR *pstrExt, [out] BSTR *pstrDesc,

 [out, retval] BOOL *pbRet);

Enumerate available “FileReader” filters.

Note: The number of available file reader filters depends on what license keys you have set.

Note: A file reader filter can be thought of as an ‘input file format handler’. You normally don’t need to refer to a
file reader filter by name – when you add a file reader filter (using IAwGraph.AddFitler) you simply

specify ‘FileReader ’. The library will then figure out which of its available (internal) file reader filters is appropriate
to handle the specified input file and use that.

Input:
 *plId File reader filter enumeration id, start with 0 then increase the returned value by 1

until no there’s no more file reader filters to enumerate.
Output:
 *plId Enumeration id for the returned file reader filter (may differ from the input value).

Note: Never ‘hard code’ id values! Ids will change if later license more file formats!
 *pstrExt File name extension normally used by the file format handled by this file reader filter.

 Pass NULL if you don’t care.

 *pstrDesc The file format name. This is a descriptive text that can be presented to the user. It is

also used to uniquely identify a file format reader – i.e. use this name and not the
enumeration id if you need to identify a certain format. Pass NULL if you don’t care.

*pbRet TRUE if a file reader filter was enumerated, FALSE if no more are available. Note:

C++ programmes can pass NULL if they want and instead use the HRESULT code

– which will be awOk if one was enumerated and awOkFalse if not.

17

HRESULT EnumFileWriters([in, out] long *plId,

 [out] BSTR *pstrExt, [out] BSTR *pstrDesc,

 [out, retval] BOOL *pbRet);

Enumerate available “FileWriter” filters.

Note: The number of available file writer filters depends on what license keys you have set.

Note: A file writer filter can be thought of as an ‘output file format handler’. When you add a file writer filter (using
IAwGraph.AddFitler) you specify ‘FileWriter’ which acts as a pseudonym for all available file reader

filters. If do not also explicitly specify the file format when adding a file writer, then the library will try to find a file
writer by matching the file extension. But the recommended method is supply it with a parameter
“fileformat=<name>” or “id=<id>” where the name or the id is found using this enumeration function.

Input:
 *plId File writer enumeration id, start with 0 then increase the returned value by 1 until no

there’s no more file writer filters to enumerate.
Output:
 *plId Enumeration id for the returned file writer filter (may differ from the input value). Note:

Never ‘hard code’ id values! Ids will change if later license more file formats!
 *pstrExt File name extension normally used by the file format handled by this file writer filter.

 Pass NULL if you don’t care.

 *pstrDesc The file format name. This is a descriptive text that can be presented to the user. It is

also used to uniquely identify a file format writer – i.e. use this name and not the
enumeration id if you need to identify a certain format. Pass NULL if you don’t care.

*pbRet TRUE if a file writer filter was enumerated, FALSE if no more are available. Note:

C++ programmes can pass NULL if they want and instead use the HRESULT code

– which will be awOk if one was enumerated and awOkFalse if not.

18

HRESULT EnumFileWriterFormats(

 [in] long lId, [in, out] long *plIndex,

 [out] BSTR *pstrName,

 [out] short *psMinChannels, [out] short *psMaxChannels,

 [out, retval] BOOL *pbRet);

For a given file writer filter, enumerate the available ‘data formats’.

Input:
 lId File writer filter id as returned by IAwManager.EnumFileWriters.

 *plId Data format enumeration id, start with 0 then increase the returned value by 1 until

no there’s no more data formats for this file writer.
Output:
 *plId Enumeration id value for the returned data format (may differ from the input value).

Don’t use this value for anything except this enumeration function.
 *pstrName The data format name. This is a descriptive text that can be presented to the user. It

is also used to uniquely identify the data format (within the context of the specified
file writer). Pass NULL if you don’t care.

 *psMinChannels Minumum no of audio channels for this data format. Pass NULL if you don’t care.

 *psMaxChannels Maximum no of audio channels for this data format. Pass NULL if you don’t care.

*pbRet TRUE if a file writer data format was enumerated, FALSE if no more are available.

Note: C++ programmes can pass NULL if they want and instead use the HRESULT

code – which will be awOk if one was enumerated and awOkFalse if not.

19

HRESULT EnumAudioInputs([in] long lId,

 [out] BSTR *pstrDesc, [out, retval] BOOL *pbRet);

Enumerate installed audio input devices.

Note: Available only with a license for the AudioInput module.

Input:
 lId Enumeration id, start with 0 then increase by one until it returns FALSE.

Output:
 *pstrDesc Name of the audio input device as given by DirectSound.

*pbRet TRUE if a device was enumerated, FALSE if no more devices.

 Note: C++ programmes can pass NULL if they want and use the HRESULT code

instead – which will be awOk if one was enumerated and awOkFalse if not.

20

HRESULT EnumAudioOutputs([in] long lId,

 [out] BSTR *pstrDesc, [out, retval] BOOL *pbRet);

Enumerate installed audio output devices.

Note: Available only with a license for the AudioOutput module.

Input:
 lId Enumeration id, start with 0 then increase by one until it returns FALSE.

Output:
 *pstrDesc Name of the audio output device as given by DirectSound.

*pbRet TRUE if a device was enumerated, FALSE if no more devices.

 Note: C++ programmes can pass NULL if they want and use the HRESULT code

instead – which will be awOk if one was enumerated and awOkFalse if not.

21

HRESULT EnumPlugIns([in] long lId,

 [out] BSTR *pstrName, [out, retval] BOOL *pbRet);

Enumerate installed (compatible) VST and DX plug-in filters.

Note: Available only with a license for the PlugIns module.

Input:
 lId Enumeration id, start with 0 then increase by one until it returns FALSE.

Output:
 *pstrName Name of a VST or DX plug-in filter.

*pbRet TRUE if a plug-in was enumerated, FALSE if no more plug-ins. Note: C++

programmes can pass NULL if they want and use the HRESULT code instead –

which will be awOk if a filter was enumerated and awOkFalse if not.

22

HRESULT CreateGraph([out, retval] IAwGraph **ppGraph);

Create an empty AwGraph object and return its IAwGraph interface.

Output:
 *ppGraph Pointer to the IAwGraph interface of the new object.

23

HRESULT CreateEasyGraph(

 [in] BSTR strInFile, [in] BSTR strOutFile,

 [in, defaultvalue(-1)] long lIdWriter,

 [in, defaultvalue(””)] BSTR strWriterFormat,

 [in, defaultvalue(-1)] long lOutSampleRate,

 [in, defaultvalue(-1)] long lOutChannels,

 [out, retval] IAwGraph **ppGraph);

Create an AwGraph object and set it up as a completed graph for performing a conversion from one file format

to another (with optional sample rate and channel format conversion), then return it’s IAwGraph interface.

Note: The only thing you then need to do with this graph is to call IAwGraph.Execute!

Input:
 strInFile Name and path of input file.

 strOutFile Name and path of output file.

 lIdWriter Id of file writer format as returned by IAwManager.EnumFileWriters.

 Use -1 to auto-detect the format from the file name extension.

strWriterFormat Name of a file writer data format as returned by IAwManager.

EnumFileWriterFormats. Use NULL or “” to use the default data

format for the file format.
 lOutSampleRate Sample rate of output file, use -1 to retain the sample rate of the input file.

 lOutChannel Number of audio channels in output file, use -1 to retain the sample channel

format as the input file.
Output:
 *ppGraph Pointer to the IAwGraph interface of the new object.

24

HRESULT DescribeError([in] long lErrorCode,

 [out, retval] BSTR *pstrDesc);

This function will return an English language text description of an error code.

Input:
 lErrorCode Error code value returned by an AwCOM 3 function.

Output:
 pstrDesc Receives a text description of the error, it will be of the semantic type:

E.g. ”Could not open input file”, or

e.g. ”Invalid or corrupted file”, or

 e.g. ”Unsupported compression scheme encountered”.

 If not an error code, it is set to ”No error”.

 If not generated by AwCOM it is set to ”COM Error ”.

25

The IAwGraph interface

The IAwGraph is the main interface to an AwGraph object representing a filter graph.

All functions return an HRESULT value.
The actual syntax used by a particular language is somewhat language dependent. E.g. parameters marked with
[retval] will be returned as function results in languages that hides the COM HRESULT values.

As all COM interfaces, it inherits from IUnknown and thus have QueryInterface, AddRef and

Release methods – it is assumed that you are familiar with these – they are not documented here (note that

some languages, e.g. VisualBasic, will handle reference counting for you and will hide these methods).

26

HRESULT AddFilter([in] BSTR strFilterName,

[in, defaultvalue(””) BSTR strParamList);

This method adds a new filter to the filter graph. The new filter is added at the end of the filter chain (i.e the
output of the previous filter added, if any, will be connected to the input of the newly added filter). The first filter
added must always be a ‘source filter’. The last added must be a ‘sink filter’. Not until after a sink filter has been
added can you call ‘IAwGraph.Execute’.

Input:
 strFilterName Filter name.

 strParamList Optional filter parameters. This is specified as a list of zero, one, or more ‘key=value’

pairs separated by space. Values containing space must be enclosed in citation
marks, e.g. file=”c:\temp\out.mp2” dataformat=”112 kbit/s”.

Note that some parameters may be required while others are optional to specify!

On the following pages are detailed the various filters available.

27

Source filters

Filter name: “FileReader”

Description: An audio file format reader – the library will select an appropriate filter from the available file reader
filters. Note that the actual file formats that can be read depends on what license keys you have set (see further
IAwManager.SetPropery(“License”, …)).

Please note that AwCOM will immediately access the specified file when adding this filter – it must not be locked
by any other app or the call to add the filter will fail.

Parameter key: Description of parameter value:

file Input file – full name and path (required).

fileformat Input file reader name (optional). This is the descriptive name of the desired file

reader as given by IAwManager.EnumFileReaders. Specifying this

overrides the automatic file format detection and forces the use of a specific reader
filter. NB, put the format name inside quotation marks (e.g. fileformat =”my format”).

id Like fileformat but using reader enumeration id instead of name (deprecated).

Filter name: “WaveSynth”

Description: This source filter generates a simple synthesized waveform and is intended for testing purposes.

Parameter key: Description of parameter value:

type Waveform type (optional, default: “sine”). Allowed values are: “zero”,

“sine”, “square”, “triangle” , “sawtooth” , “spike”.

rate Waveform rate in Hz, i.e. number of cycles per second (optional, default: 440).

samplerate Output sample rate in Hz (optional, default: 44100).

length Output length in number of samples (optional, default: 44100).

 Specify 0 to keep running forever.

Filter name: “AudioInput”

Description: Audio recording source. (NB: Available only with a license for the AudioInput module).

After you have completed the graph, to start recording, simply call IAwGraph.Execute() which will return

as soon as recording has been started. Recording will continue until you either free the graph, or you call
IAwGraph.SetProperty(“AudioInput.Record=0”). You can query if it is recording at any

time by calling IAwGraph.GetProperty(“AudioInput.IsRecording”), which will return

“1” while recording, and “0” otherwise.

Parameter key: Description of parameter value:

device Audio input device name (default: use system default device).

 Use IAwManager.EnumAudioInputs to find device names.

samplerate Input sample rate in Hz (optional, default: 44100).

id Like device but using the audio-in enumeration id instead of name (deprecated).

28

Sink filters

Filter name: “FileWriter”

Description: Audio file format writer meta filter’. It will select among the available file writer filters and add an
appropriate one. Note that the actual file formats that it can be written depends on what license keys you have set
(see further IAwManager.SetPropery(“License”, …)).

Please note that AwCOM may immediately try to create the specified file when adding this filter – it must not be
locked by any other app or the call to add the filter will fail.

Parameter key: Description of parameter value:

file Output file – full name and path (required).

fileformat Output file writer name (optional but recommended). This is the descriptive name of

the desired file format writer as given by IAwManager.EnumFileWriters.

Specifying it overrides the automatic file writer assignment by file extension. NB, put
the file format name inside quotation marks (e.g. fileformat =”Vorbis Ogg stream”).

dataformat The output data format (optional, the default value depends on file format). Many file

writer filters (specified by the fileformat parameter) can save the actual audio

data in several different data storage formats (e.g. “PCM 16-bit” or “mu-

Law”). Use IAwManager.EnumFileWriterFormats to find out which

data formats that a particular file writer supports!
id Like fileformat but using writer enumeration id instead of name (deprecated).

Filter name: “NullSink”

Description: This sink filter simply swallows the input and is intended for testing purposes only.

Parameter key: Description of parameter value:

Filter name: “AudioOutput”

Description: Audio playback sink. (NB: Available only with a license for the AudioOutput module).

After you have completed the graph and want to start playback, simply call IAwGraph.Execute() which

will return as soon as playback has been started. Playback will continue either until the end, or until you free the
graph, or call IAwGraph.SetProperty(“AudioOutput.Play=0”).The latter will pause the

playback. You can un-pause it by calling IAwGraph.SetProperty(“AudioOutput.Play=1”).

Use IAwGraph.GetProperty(“AudioOutput.IsPlaying”) to query if it is currently playing

- it will return “1” when playing, and “0” otherwise. You can also change the playback position by calling

IAwGraph.SetProperty(“AudioOutput.PlayPos=<asamplenumber>”), or query the

current position by calling IAwGraph.GetProperty(“AudioOutput.PlayPos”).

Parameter key: Description of parameter value:

device Audio output device name (default: use system default device).

 Use IAwManager.EnumAudioOutputs to find device names.

id Like device but using the audio-out enumeration id instead of name (deprecated).

29

Morph filters

Filter name: “ChannelBroker”

Description: Converts the input to a desired number of output channels.

Parameter key: Description of parameter value:

outchannels The desired number of output channels (required).

Filter name: “Trimmer”

Description: Trims the incoming audio data and only forwards the portion inside the trim range [start … stop).

Parameter key: Description of parameter value:

start All incoming samples before this sample number will be removed (default: 0).

stop This and all subsequent samples will be removed (default: keep all until end of data).

fade Fade in volume during these number of samples after trim start (default: 0).

Filter name: “PlugIn”

Description: Encapsulates VST and DX plug-ins. (NB: Available only with a license for the PlugIns module).

Parameter key: Description of parameter value:

name Name of the VST or DX plug-in filter (required).
 Find the name using IAwManager.EnumPlugIns.

load A full path to a file from which to load filter settings (optional).
save A full path to a file to which to save the filter settings (optional).

 edit Show an edit dialog where the user can change settings (optional, default: “no”).

30

Filter name: “Normalizer”

Description: Normalizes audio data. (NB: Available only with license for Normalizer module).
This is a 2-pass procedure – data is buffered in a temporary file on disc between the two passes. In addition to
either modifying the audio data or outputting gain adjustment meta data, it will also output peak level meta data.

Parameter key: Description of parameter value:

type Normalization algorithm (optional, default: “peak”). Supported values:

scale Scale the volume by the target level.

peak Normalize the peak value to the target level.

rmspower Normalize root of mean of square of signal power to target level

rmsamp Normalize root of mean of square of signal amplitude to –“–.

replaygain Normalize using the ReplayGain algorithm (relative to ref.level).

replaygainx Normalize using enhanced ReplayGain (w. ISO 226:2003 filter).

leqrlb Normalize using –Leq(RLB) as per ITU BS.1770.

leqr2lb Normalize using –Leq(R2LB) as per ITU BS.1770.

ebur128 Normalize using EBU R128 integrated loudness measure.

action Set to ”modifyaudio” to modify the volume of the actual audio samples.

 Set to ”metadata” to output gain adjustment meta data (audio is untouched).

 (optional, default: “metadata” for replaygains, “modifyaudio” for the others)

level The target level (optional). It’s interpretation depends on the “type” param: for

“scale” it is in dB (def.: “0”) – for replaygain’s it is dBSPL of the ref.-level (def.: “89”)
– for leq’s it is the leq-target level (def.: “-20”) – for “ebur138” it is in LU (def.: “0”,
note: 0 LU = -23 LUFS) – for all other types it is in dBFS (def.: “0.0”).

value Same as level, but given as a linear amplitude instead of in dB (value = 10(level / 20)).

maxpeaklevel Enforces that the peak value level is not raised above maxpeak in dBFS. Set to

”0” to prevent the level to be raised above the clipping point (opt., def.: ”” = off).

maxpeakvalue Same as mapeaklevel but given as a linear amplitude instead of in dbFS (opt.).

truepeak Find true-peak level (w. 16x upsampling; output meta-data). (optional, def.: ”no”)

fixdc Remove any DC offset. Values: ”yes” or ”no” (optional, default: ”no”).

limiter.value Use limiter to prevent clipping. Set to ”” to clip to disable the limiter and simply

clip to the -1..1 range. Set to a value between ”0”..”1” to enable the limiter and

set the linear level above which the limiter kicks in. (optional, default ””)

limiter.level Sane as limiter.value, except that it’s given in dBFS instead of linear level.

Note: If you wish to calculate the ReplayGain track-gain adjustment value without actually doing a conversion (i.e.
without running the whole graph), then first add your file reader, then add any processing filters that you wish to
work before the gain calculation, then add a normalizer filter with a type of rgmeta, rgmodify, rgxmeta, or
rgxmodify, then you can ask the graph for the following properties:

 Normalizer.GainAdjustment The calculated gain adjustment in dB. NB, this is only available for

these normalization types: replaygain, replaygainx, ebur128
 Normalizer.InPeakValue The peak linear amplitude of data coming into the normalizer filter.

 Normalizer.InPeakLevel The peak level in dB of incoming data coming into the normalizer

 Normalizer.OutPeakValue The peak linear amplitude of outgoing data leaving the normalizer.

 Normalizer.OutPeakLevel The peak level in dB of outgoing data leaving the normalizer filter.

NB, when calling GetProperty(), don’t forget to check the return code to see if there was any error when reading
from and analysing the source file.

31

Filter name: “Resampler”

Description: Resamples (i.e. changes the sample rate) of the audio data.

Parameter key: Description of parameter value:

samplerate The new sample rate in Hz (required).

algorithm Resampling algorithm (optional, default: “auto”). Supported algorithms:

 “nearest”, “linear”, “cubic”, “fir8”, “fir12”, “fir16”,

“fir20”, “fir24”, “auto”.

The FIR algorithms have increasing complexity with increasing number:

- ”fir8” - should be perfectly adequate for 8-bit PCM output but not otherwise recommended unless you

are in a hurry. It provides > 8-bit S/N ratio near the Nyquist-frequency (and better than that at lower
frequencies).

- ”fir12” - is a good compromise between calculation speed and audio quality, suitable for quick

conversion of 16-bit PCM output. It provides > 12-bit S/N ratio near the Nyquist-frequency (and better
than that at lower frequencies).

- ”fir16” - should have more than enough accuracy for perfectly handling 16-bit PCM output precision. It

provides > 16-bit S/N ratio near the Nyquist-frequency (and better than that at lower frequencies).

- ”fir20” - should have more than enough accuracy for perfectly handling 20-bit PCM output precision

and it will work very well for 24-bit PCM output too. It provides > 20-bit S/N ratio near the Nyquist-
frequency (and better than that at lower frequencies).

- ”fir24” - is for when you need the best possible accuracy for 24-bit PCM output. It is by computational

necessity very slow (CPU-hungry). It provides > 24-bit S/N ratio near the Nyquist-frequency (and better
than that at lower frequencies).

- ”auto” – selects between “fir16”, “fir20” and “fir24” depending on the data format of the input file.

Filter name: “SilenceRemoval”

Description: Removes silent sections from the audio. (NB: Available only with a license for SilenceRemoval).

Parameter key: Description of parameter value:

level Thresh-hold level (optional, default:”0.05”). A value between 0 and 1 – sections

of audio data where the sample data value amplitudes are lower then this value (for
at least length samples in a row) will be ‘cut’.

length Minimum number of samples in a row that must be below the thresh-hold level before

an audio section is cut away (optional, default:”1000”).

leadonly Option to remove only leading silence (i.e. only silence at the very start of the

recording will be cut). Values: “yes” or “no”. (optional, default ”no”).

32

HRESULT EnumFilters([in] long lId, [out] BSTR *pstrName,

[out, retval] BOOL *pbRet);

Enumerate the filters in the filter graph.

Input:

lId Filter index in the graph, use 0 for the first filter, then increase by to get the next and

so on until the function returns FALSE.

Output:
 *pstrName Returned filter name, pass NULL as input if you are not interested.

*pbRet TRUE if a filter was enumerated, FALSE if there’s no more filters.

 Note: C++ programmes can pass NULL if they want and use the HRESULT code

instead – which will be awOk if a filter was enumerated and awOkFalse if not.

33

HRESULT Execute(void);

Execute the graph, i.e. perform the conversion.
Note: The call is synchronous, i.e. it will not return until the conversion is completed (or failed).

34

HRESULT GetProperty([in] BSTR strName,

[out, retval] BSTR *pstrValue);

Get an informational property.

Input: strName Name of property to get.

Output: *pstrValue Property value (And empty string if property not available).

Supported properties for retrieval:

Property name: Property value description:
In.SampleRate Sample rate of input file.

In.Channels Number of channels of input file.

In.Length Number of samples in input file. NB: “Unknown” if length is unknown!

In.Duration Length in seconds (i.e. In.Length/In.SampleRate).

In.FileFormat File format of input file.

In.DataFormat Data format of input file.

Out.SampleRate Sample rate of output file.

Out.Channels Number of channels of output file.

Out.Length Number of samples in output file.

Out.Duration Length in seconds (i.e. Out.Length/Out.SampleRate).

Out.FileFormat File format of output file.

Out.DataFormat Data format of output file.

Progress The current progress of an ongoing conversion in percent, i.e. 0...100.

Meta.Title ‘Name’ or ‘title’ given to the recording

Meta.SubTitle Sub-title, or sub-heading given to the recording

Meta.Artist Artist name.

Meta.Composer Composer name.

Meta.Performer Performer name.

Meta.Conductor Conductor name.

Meta.Publisher Publisher name.

Meta.Engineer Recording engineer name.

Meta.Album Name of product (CD, DVD et c) containing the recording.

Meta.TrackNumber Track number of recording.

Meta.Genre Genre/category as “(ID3v1 number)Name”.

Meta.Date When it was released: YYYY or up to YYYY-MM-DD, HH-MM-SS

Meta.Comment Any comments for the recording

Meta.Copyright Any copyright information.

Meta.URL Universal resource locator reference.

Meta.LoopBeg Loop start point.

Meta.LoopEnd Loop end point.

Meta.LoopType Loop type (“fwd”, “bid”, or “rel”).

Meta.RootKey MIDI root key number (0..127).

Meta.FineTune Fine tuning in cents (-50..+50).

Meta.GainAdjustment Playback gain adjustment in dB.

Meta.AlbumGainAdjustment Album mode playback gain adjustment in dB.

Meta.PeakValue Peak sample value (in normalized linear scale).

Meta.Reference Recording reference/catalogue number or similar.

Meta.CuePoints Cue points list, format: sampleno=”text”, nextsampleno=”next text”, ...

Meta.TimeCode Time for broadcast (in seconds since midnight).

Note that these properties can not be retrieved until at least a source filter has been added to the graph.
The Out* properties can not be retrieved until a FileWriter filter has been added to the graph.
Note: Additional properties are available when an Normalizer, AudioInput, or AudioOutput filter is present in the
graph – for details please see the documentation for these specific filters.

35

HRESULT SetProperty([in] BSTR strName,
[in] BSTR pstrValue);

Set an informational property.

Input:
 strName Name of property to set.

Output:
 pstrValue Property value.

Supported properties that you can set:

Property name: Property value description:

In.SampleRate Override sample rate of input file.

ClearGraph Set to 1 to release all filters in the graph & free file handles.

Meta.* Please refer to IAwGraph::GetProperty

Note that these properties can not be set until at least a source filter has been added to the graph.

Note: Additional properties are available when an Normalizer, AudioInput, or AudioOutput filter is present in the
graph – for details please see the documentation for these specific filters.

Note: For use with BWF files, SetProperty and GetPropery supports the following name aliases:

Property name alias: Maps to property:
BWF.Description Meta.Comment
BWF.Originator Meta.Publisher
BWF.OriginatorReference Meta.Reference
BWF.OriginationDateAndTime Meta.Date
BWF.TimeReference Meta.TimeCode

